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Abstract-In an earlier paper, we proved a strong version of 
the redundancy-capacity converse theorem of universal coding, 
stating that for “most” sources in a given class, the universal 
coding redundancy is essentially lower-bounded by the capacity 
of the channel induced by this class. Since this result holds for 
general classes of sources, it extends Rissanen’s strong converse 
theorem for parametric families. While our earlier result has 
established strong optimality only for mixture codes weighted 
by the capacity-achieving prior, our first result herein extends 
this finding to a general prior. For some cases our technique 
also leads to a simplified proof of the above mentioned strong 
converse theorem. 

The major interest in this paper, however, is in extending the 
theory of universal coding to hierarchical structures of classes, 
where each class may have a different capacity. In this setting, 
one wishes to incur redundancy essentially as small as that 
corresponding to the active class, and not the union of classes. Our 
main result is that the redundancy of a code based on a two-stage 
mixture (first, within each class, and then over the classes), is no 
worse than that of any other code for “most” sources of “most” 
classes. If, in addition, the classes can be efficiently distinguished 
by a certain decision rule, then the best attainable redundancy 
is given explicitly by the capacity of the active class plus the 
normalized negative logarithm of the prior probability assigned 
to this class. These results suggest some interesting guidelines as 
for the choice of the prior. We also discuss some examples with 
a natural hierarchical partition into classes. 

Index Terms- Universal coding, minimax redundancy, max- 
imin redundancy, capacity, redundancy+apacity theorem, mix- 
tures, arbitrarily varying sources. 

I. INTRODUCTION 
N THE basic classical setting of the problem of universal 
coding it is assumed that, although the exact information 

source is unknown, it is still known to belong to a given class 
{P(. lQ),  8 E A}, e.g., memoryless sources, first-order Markov 
sources, and so on. The performance of a universal code is 
measured in terms of the excess compression ratio beyond the 
entropy, namely, the redundancy rate R,(L, e ) ,  which depends 
on the code length function L(.) ,  the source indexed by 8, and 
the data record length n. The minimax redundancy 

R: = min sup R,(L, Q) 
6 E A  

defined by Davisson [9], is the minimum uniform redundancy 
rate that can be attained for all sources in the class. Gallager 
[13] was the first to show (see also, e.g., [ l l ] ,  [22] )  that 
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RZ = C,, where C, is the capacity (per symbol) of the 
“channel” from Q to the source string 2 = ( 2 1 , .  . . , xn), i.e., 
the channel defined by the set of conditional probabilities 
{P(zIQ),  8 E A}. This redundancy rate can be achieved by 
an encoder whose length function corresponds to a mixture of 
the sources in the class, where the weighting of each source 
0 is given by the capacity-achieving distribution. Thus the 
capacity C, = RZ actually measures the richness of class 
from the viewpoint of universal coding. 

One may argue that the minimax redundancy is a pes- 
simistic measure for universal coding redundancy since it 
serves as a lower bound to the redundancy for the worst 
source only. Nevertheless, for smooth parametric classes of 
sources, Rissanen I181 has shown that this (achievable) lower 
bound essentially applies to most sources in the class, namely, 
for all 8 except for a subset B whose Lebesgue measure 
vanishes with n. In a recent paper [16], we have extended this 
result to general classes of information sources, stating that for 
any given L,  R,(L, 8) is essentially never smaller than C,, 
simultaneously for every Q except for a “small” subset B. The 
subset B is small in the sense of having a vanishing measure 
w.r.t. the prior w* that achieves (or nearly achieves) capacity.’ 
The results in [16] strengthen the notion of Shannon capacity 
in characterizing the richness of a class of sources. In this 
context, our first contribution here is in developing a technique 
that both simplifies the proof and extends the result of [16] to 
a general prior, not only the capacity-achieving prior. In light 
of all these findings, this basic setting of universal coding for 
classes with uniform redundancy rates is now well understood. 

Another category of results in universal lossless source 
coding corresponds to situations where the class of sources 
is so large and rich, that there are no uniform redundancy 
rates at all; for example, the class of all stationary and ergodic 
sources. In these situations, the goal is normally to devise 
data compression schemes that are universal in the weak 
sense only, namely, schemes that asymptotically attain the 
entropy of every source, but there is no characterization of the 
redundancy, which might decay arbitrarily slowly for some 
sources. In fact, this example of the class of all stationary and 
ergodic sources is particularly interesting because it can be 
thought of as a “closure” of the union of all classes A, of 
ith-order Markov sources: every stationary and ergodic source 
can be approached, in the relative entropy sense, by a sequence 
of Markov sources of growing order. Unfortunately, existing 
universal encoders for stationary and ergodic sources (e.g., the 
Lempel-Ziv algorithm) are unable to adapt the redundancy 

‘It is explained in [16] why it is more reasonable to measure the exception 
set B w.r.1. tu* (or a good approximation to tu*) rather than the uniform 
measure. 
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when a source from a “small” subclass is encountered. For 
example, when the underlying source is Bernoulli, the redun- 
dancy of the Lempel-Ziv algorithm does not reduce to the 
capacity C, M 0.5lognln of the class of Bernoulli sources. 

This actually motivates the main purpose of this paper, 
which is to extend the scope of universal coding theory so 
as to deal with hierarchies of classes. Specifically, we focus 
on the following problem: let AI Az, . . . , denote a finite or 
countable set of source classes with possibly different capac- 
ities C, (A,), C, (Az) . . . . We know that the source belongs 
to some class A, but we do not know i .  Our challenge is to 
provide coding schemes with optimum “adaptation” capability 
in the sense that, first, the capacity of the active class C,(Ai) 
is always approached, and moreover, the extra redundancy due 
to the lack of prior knowledge of i is minimum. 

One conceptually straightforward way to achieve this adap- 
tation property is to apply a two-part code, where the first part 
is a code for the index i using some prior on the integers { T ~ } ,  
and the second part implements optimum universal coding 
within each class. By doing this, one can achieve redundancy 
essentially as small as Cn(Az) + (log l/r,)/n. This method, 
however, requires a comparison between competing codes 
for all { i }  or a good estimator for the true i, for example, 
the minimum description length (MDL) estimator [ 171-[ 191 
or some of its extensions (see, e.g., [2], [3]). Although this 
approach has been proved successful in certain situations, it is 
not clear whether it is optimal in general. 

An alternative approach, proposed first by Ryabko [23] for 
Markov sources, is to make a further step in the Bayesian 
direction and to use a code that corresponds to a two-stage 
mixture, first within each class and then over the classes. 
(See also, e.g., [26] for efficient implementation of two-stage 
mixture codes, and [25] for other related work.) It is easy to 
show that the resultant redundancy is never larger than that of 
the above mentioned two-part code. We will see, however, that 
the reasoning behind the Bayesian approach to hierarchical 
universal coding is deeper than that. We prove that a two- 
stage mixture code with a given weighting is no worse than 
any other lossless code for “most” sources of “most” classes 
w.r.t. this weighting. 

If, in addition, the classes {A,} are distinguishable in 
the sense that there exists a good estimator for i (e.g., the 
Markovian case where there is a consistent order estimator 
[24]), then the minimum attainable redundancy is essentially 

1 1  
n T; 

C,(Ai) + -log -. 

While this redundancy is well known to be achievable, here we 
also establish it as a lower bound. This suggests an interesting 
guideline with regard to the choice of the prior: It would be 
reasonable to choose { T ; }  so that the second term would be a 
negligible fraction of the first term, which is unavoidable. This 
means that the richer ciasses are assigned smaller weights. 

In other cases, the redundancy of this two-stage mixture 
code, which essentially serves as a lower bound for any other 
code, can be decomposed into a sum of two capacity terms. 
The first is the intra-class capacity (?,(A,), representing the 
cost of universality within Ai, and the second term is the 

inter-class capacity e,, which is attributed to the lack of prior 
knowledge of the index i .  The goal of approaching C,(A;) 
for every i is now achievable if c, (which is independent of 
i) is very small compared to C,(h,) for all i. 

In the last part of the paper, we analyze the special case 
of finite-state (FS) arbitrarily varying sources (AVS’s), where 
such a decomposition property takes place if the (A,} are 
defined as the type classes of all possible underlying state 
sequences. Here, the first term C,(h;), which depends on 
the type of the state sequence, tends to a positive constant as 
n 4 00, while the second term c, behaves like O(logn/n).  
Our results indicate that the best attainable compression ratio is 
essentially as if the state sequence was i.i.d. with a probability 
distribution being the same as the empirical distributioin of 
the actual underlying (deterministic) state sequence. This is 
different from earlier results due to Berger [4, sec. 6.1.21 and 
Csisziv and Komer [8, Theorem 4.31 for fixed length irate- 
distortion codes. According to [4] and [8], for the distortionless 
case, the best attainable rate is the same as if the state sequence 
were i.i.d. with the worst possible distribution in the sense of 
maximizing the source output entropy. Thus by applying: the 
hierarchical approach to AVS’s, we have both improved the 
main redundancy term and characterized the best second-order 
term c,. 

The outline of the paper is as follows. In Section 11, some 
preliminaries and background of earlier work are provided. In 
Section 111, a simplified and extended version of [ 16, Theorem 
11 is presented. In Section IV, the main results are derived for 
general hierarchies of classes of sources. In Section V, the 
closed-form expression (1) for the best achievable redundancy 
is developed for the case of distinguishable classes. Finally, in 
Section VI, the special case of FS AVS’s is studied. 

11. BACKGROUND 

Throughout this work, we adopt the convention that a 
(scalar) random variable is denoted by a capital letter (e.g., X ) ,  
a specific value it may take is denoted by the respective lower 
case letter (z), and its alphabet is denoted by the respective 
script letter (X). As for vectors, a bold-type capital letter (X) 
will denote an n-dimensional random vector ( X I ,  . . . , X,,), a 
bold-type lower case letter (2) will denote a specific vector 
value (XI, . . . , z,), and the respective super-alphabet, which 
is the nth Cartesian power of the single-letter alphabet, will be 
denoted by the corresponding script letter with the superscript 
n ( X n ) .  The cardinality of a set will be denoted by I . 1, 
e.g., 1x1 is the size of the alphabet of X .  Alphabets will 
be assumed finite throughout this paper. Probability inass 
functions (PMF’s) of single letters will be denoted by lower 
case letters (e.g., p )  and PMF’s of n-vectors will be denoted 
by the respective capital letters (P) .  

A uniquely decipherable (UD) encoder for n sequences 
maps each possible source string 2 E X” to a binary word 
whose length will be denoted by L(x) ,  where by Kraft’s 
inequality 
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For the sake of convenience, and essentially without any effect 
on the results, we shall ignore the integer length constraint 
associated with the function L(.)  and allow any nonnegative 
function that satisfies Kraft's inequality. 

Consider a class of information sources {P(.l6')} indexed 
by a variable 6' E A. For a source P(.lS) and an encoder with 
length function L(.) ,  the redundancy is defined as 

where E[.l6'] denotes expectation w.r.t. P(.l6') and H(Xl0) 
denotes the nth-order entropy of P(.lS), i.e., 

H(Xl6') = - P(Xl0)  logP(xl6') (4) 
X E X "  

where logarithms throughout the sequel will be taken to the 
base 2. 

Davisson [9] defined, in the context of universal coding, 
the minimax redundancy and the maximin redundancy in the 
following manner. The minimax redundancy is defined as 

RR = minsup Rn(L, 6'). (5 )  
0EA 

To define the maximin redundancy, let us assign a probability 
measure w(.) on A and let us define the mixture source 

Pw(Z,) = J, w(dB)PQ(z"). (6) 

The average redundancy associated with a length function L(.) 
is defined as 

R,(L, W) = w(dO)R,(L, 6'). (7) l 
The minimum expected redundancy for a given w (which 
is attained by the ideal code length w.r.t the mixture, i.e., 
Lw(zn)  = -logPw(zn)) is defined as 

R,(w) = minR,(L,w). (8) L 

Finally, the maximin redundancy is the worst case minimum 
expected redundancy among all priors w, i.e., 

R, SUP Rn(w). (9) 
W 

It is easy to see [9] that the maximin redundancy is identical 
to the capacity of the channel defined by the conditional 
probability measures P(xlB), i.e., 

1 
R, = C, = SUP - I w ( O ; X n )  

, n  

where 1, (0; X n )  is the mutual information induced by the 
joint measure w(6') . P(xl6'). If the supremum is achieved by 
some prior w* (i.e., if it is in fact a maximum), then w* is 
called a capacity-achieving prior.2 Gallager [ 131 was the first 
to show that if P(xl6') is a measurable function of 6' for every 
x then R; = R$ and hence both are equal to C,. 

While C, = RL is by definition, an attainable lower 
bound to R,(L,6') for the worst source only, it turns out 

'Note that W* may not be unique. 

to hold simultaneously for "most" points 6'. Specifically, the 
following converse theorem to universal coding, with slight 
modifications in the formalism, was stated and proved in [16, 
Theorem 11. 

TEereom 1 [16]: For every UD encoder that is independent 
of 8, and every positive sequence {A,} 

Rn(L, 6') 2 Cn - An (11) 

for every 6' E A except for a subset B & A whose probability 
w.r.t. w* is less than e . 2pnX,. 

The theorem is of course meaningful if A, << C, and, at 
the same time, nX, tends to a large constant or even to infinity 
(which is possible if nC, + ea). In this case, the lower bound 
on the redundancy for every 6' E B" = A - B is essentially C,. 

In order for B" to cover "most" sources in A, the capacity- 
achieving prior w* must be bounded away from zero. Other- 
wise, the theorem, though formally correct, might be mean- 
ingless. This point is discussed extensively in [16], and it is 
handled in two ways. First, it is shown that a similar theorem 
holds for priors that nearly achieve capacity. If such a prior 
is also bounded away from zero (e.g., the uniform prior or 
Jeffreys' prior in the parametric case), then it can be used 
instead of w*. Therefore, as a special case of Theorem 1, one 
obtains Rissanen's converse theorem to universal coding [ 181 
for smooth parametric families with IC degrees of freedom, 
where C, M 0.5IClogn/n. Second, another lower bound, the 
random coding capacity instead of the Shannon capacity, is 
derived for an arbitrary prior. This bound, however, might not 
be tight in general. A third approach, which leads to our main 
results in this paper, is described in the next section. 

111. ANOTHER LOOK AT THE CONVERSE THEOREM 

The above discussed results not only provide performance 
bounds, but also indicate that an optimal universal encoder, in 
the sense of Theorem 1, is based on a mixture of the sources 
in the class w.r.t. a certain prior. It turns out, however, that 
the class of codes based on mixtures of {P(.l6')} is optimal 
in a deeper and wider sense. In [16, eq. (17)] it was shown 
that for every length function L that does not depend on B ,  
there exists a length function L' associated with some mixture 
over A, such that R, (L', 6') 5 R, ( L ,  0) simultaneously for all 
6' E A. Therefore, there is no loss of optimality if universal 
codes are sought only among these that correspond to mixtures 

Furthermore, we next show that the redundancy of the 
Shannon code based on a mixture Jn w(dB)P(slB) with a 
given prior w, is optimal not only on the average w.r.t. w, but 
also for most 6' w.r.t. w. In other words, the redundancy of 
any length function L is essentially lower-bounded in terms 
of the redundancy of L,, which is a well-defined quantity 
although may not have a closed-form expression. This is more 
general than [16, Theorem 11 since it holds for arbitrary 20, 

not just the capacity-achieving prior w*. For w = w*, it also 
leads to a considerably simpler proof of [16, Theorem 11 in 
some cases, e.g., when A is a finite set. An additional bonus 
is that the factor e in the upper bound on the probability of 
B is removed. 

of {P(.(6'),@ E A>.  
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Theorem 2: Let L(.)  be the length function of an arbitrary 
UD encoder that does not depend on 6, and let L,(z) = 
-log P, (5) where Pw(.) is defined as in (6). Then, for every 
positive sequence {A, j 

&(L! 0) 2 Rn(Lw! 0) - An 

w ( ~ )  = w ( d 6 )  I 2-% (13) 

(12) 

for every 0 E A except for points in a subset B & A where 

s, 
Observe that if A is a finite set and 20 = w*, the capacity- 

achieving prior, then Rn(Lw*,6) = C, for all 6 E A with 
positive prior probability [12, Theorem 4.5.11, and so, we 
obtain [16, Theorem 11 at least for a discrete A as a special 
case. Clarke and Banon [5],  [6] have shown also that for 
parametric classes of mcmoryless sources and Jeffreys' prior 
w J (which nearly attains capacity), R, (L,, , 6 )  coincides with 
C, within a term of O ( l / n ) .  Therefore, Theorem 2 extends 
Theorem 1 in the parametric case as well. 

For choices of w that are significantly different from w*, 
the redundancy R,(L,, 6) may depend on 6. The choice of 
w may depend on the desired weighting that one may wish to 
assign to the exceptional set B according to Theorem 2.  For 
example, for a uniform w, the quantity w(B) has the meaning 
of a simple relative count if A is discrete, or the Lebesgue 
measure if A is continuous (see also [lS]). 

Another way to look at Theorem 2 is in terms of the 
relative entropy. Since one may confine attention to length 
functions that satisfy Kraft's inequality with equality, then 
Q(z) = 2-L(z) can be thought of as a probability measure 
and so 

1 
Rn(L, 6) = ;D(P(.l0)lIQ) 

From this point of view, Theorem 1 tells us that 

for most 6 w.r.t. w. In words, among all fixed probability 
measures of n-tuples, PW is essentially the "closest" to "most" 
measures in the class. This inequality, which was discussed 
extensively in [16], continues to hold even when x takes on 
values in a continuous alphabet. Therefore, it is not limited 
merely to the context of lossless source coding. 

Proof of Theorem 1: By Kraft's inequality, 

X E X n  

where the second inequality follows from the convexity of 
the function f ( u )  = 2" and Jensen's inequality. Finally, by 
Markov's inequality and (15), we have 

w ( ~ )  = w { ~ :  2nlRn(Lw,@)-Rn(L,@)l > 2nXn 1 

0 
The proof of Theorem 2 can be viewed as an extended 

version of a simple technique [ l ]  for proving the competitive 
optimality property [7]. Competitive optimality means thal the 
Shannon code length is not only optimum in the expected 
length sense, but it also outperforms, within c bits, any 
other length function with probability at least 1 - 2-'. More 
precisely, if L, (5) = -log P ( z )  for a givcn source P,  then for 
any other UD code with length function L, Kraft's inequality 
implies (similarly as above) that 

X 

which, in turn, by Markov's inequality, leads to 

Pr {L , (z )  > L ( z )  + e}  5 2-" 

for all c. The above proof of the universal coding result just 
contains a refinement that the expectation w.r.t. z is raised to 
the exponent, while the expectation w.r.t. 6 is kept intact. 

In the other direction, as will be demonstrated in the 
next section, the proof of Theorem 2 is easy to extend to 
hierarchical structures of classes of information sources. 

Iv. TWO-STAGE MIXTURES ARE 
OPTIMAL. FOR HIERARCHICAL CODING 

Consider a sequence of classes of sources, AI ! A2! . . . ! AM, . 
The number of classes M, may be finite and fixed, or growing 
with n, or even countably infinite for all n .  We know that the 
active source P(.l6) belongs to one of the classes A, but we 
do not know i in advance. In view of the above findings, if one 
views this problem just as universal coding w.r.t. the union of 
classes A = U, A,! then the redundancy would be the capacity 
Cn(A) associated with A. For example, if A,, 1 5 i 5 M, is 
the class of all finite-state sources with i states, then Cn(A) 
is essentially the same as the redundancy associated with 
the maximum number of states M,. Obviously, it is easy 
to do better than that as there are many ways to approach 
the capacity C,(h,) of the class corresponding to the active 
source. 

One conceptually simple approach is to apply a two part 
code described as follows: For a given z, the first part (the 
header) encodes the index z using some prior on the integers 
{7r,j, and the second part implements L,: , which corresponds 
to the capacity-achieving prior w: of Ai. The value of i 
is chosen so as to minimize the total length of the code. 
By doing this, one achieves redundancy essentially as small 
as C,(A,) + (log 1/7ra)/n. This method, however, requires 
a comparison between competing codes for all { i ) ,  or an 
estimator for i (e.g., the minimum description length estimator 
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[19]). It is not clear, however, whether this yields the best 
achievable redundancy in general. 

In view of the optimality of the Bayesian approach for 
a single class, a natural alternative is to use a code that 
corresponds to a two-stage mixture, first over each A, and then 
over { i } ,  which is obviously equivalent to a certain mixture 
over the entire set A. This idea has been first proposed by 
Ryabko [23] for the hierarchy of Markov sources. A simple 
observation is the following. Let w, denote a prior on A, and 
let 7r = { ~ i }  denote a prior on the integers 1 5 i 5 M,. 
Now, let 

i=l 

and 

Let us take a closer look at the redundancy of the two-stage 
mixture code R, (L,, e ) .  

where Lw% is the length function of the Shannon code w.r.t. 
Pws. Thus the redundancy of L, is decomposed into two 
terms. The first is R,( Lws, e ) ,  the redundancy within A,, and 
the second is 

L, (2) = -log P, (2). (19) 

Since P,(x) 2 7r,Pw,(z), then by choosing w, = w:, the 
resulting redundancy would be essentially upper-bounded by 

mixture approach is at least as good as the two-part approach. 

As mentioned earlier, since PT(x) is never smaller than 
7r,Pwa(x), it is readily seen that 

that of the above described two-part code. In other words, the sup ?-,(e) 5 n-l log (1/7rz). 
BEA, 

But as discussed in the beginning of Section 111, the opti- 
mality of the mixture approach follows from deeper consider- 
ations, which are relevant to the hierarchical setting as well. 
Indeed, by a simple extension of the proof of Theorem 2 above, 
we show that L,(z) for arbitrary weighting is essentially 
optimum for “most” sources of “most” classes w.r.t. this 
weighting. 

Theorem 3: Let L(.) be the length function of an arbitrary 
UD encoder that does not depend on B or 2,  and let {A,} be 
a positive sequence. Then for every r ,  except for a subset 
of { 1 , 2 , .  . . , M,} whose total weight w.r.t. n- is less than 
2YnX- ,  A, has the following property: 

R,(L, 0) 2 R,(L,, 6) - 2 L f  (20) 

for every 0 E A, except for points a subset B, G A, where 

w,(B,) 5 2-nxn. (21) 

Pro03 Similarly as in the proof of Theorem 2, we obtain 

M ,  

Thus by Markov’s inequality 

w, ( d ~ ) p ( ~ l  8 )24Rn  ( L  A- -Rn  (Wl 5 2 n L  (23) 

for all i except for a subset of integers in { 1 , 2 ,  . . . , M,} 
whose total weight w.r.t. 7r is less than 2-nxn. Now, for every 
nonexceptional 2 ,  we have by another application of Markov’s 
inequality 

J,. 

w,{Q E A,: R,(L,, B )  2 R,(L, 0) + ax,} 5 2-,’,. (24) 

0 

In the next section, we show that if the classes are efficiently 
distinguishable upon observing x by a good estimator of i ,  
then not only is this bound tight, but moreover, .,(e) M 

n-l log (I/..,) for “most” 8 w.r.t w,. 
Returning to the general case, a natural question that arises 

at this point is how to choose the priors {w,} and 7r. There are 
two reasonable guidelines that we may suggest. The first is to 
put more mass on sources and classes which are considered 
“more important” in the sense of Theorem 3. If all classes and 
all sources in each class are equally important, use uniform 
distributions. A second reasonable choice (for the same reasons 
as explained in [16]) is w, = w: for all i ,  and n- = n-*, where 
7r* achieves the capacity c, of the “channel” from i to 2, as 
defined by Pw; (2). Note that in this case, since the expectation 
of .,(e) w.r.t. w,* is e, [12, Theorem 4.5.11, we have 

for all i with n-f > 0. Namely, the maximum redundancy is 
lower-bounded by the sum of two capacity terms: the intra- 
class capacity Cn(A,) associated with universality within 
each class, and the inter-class capacity e,, which is the cost 
attributed to the lack of knowledge of i .  

In Section VI, we provide the example of finite-state (FS) 
arbitrarily varying sources (AVS’s), where inequality (27) 
becomes an equality for every source B in the class. This 
happens because in the special case of the AVS, rn(0) turns 
out to be independent of 0 and so 

r,(Q) = Wi(B’)T,(B’) = en 
P E A ,  

for all 8. 
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v. DISTINGUISHABLE CLASSES OF SOURCES 

It was mentioned earlier that 

sup rn(0) 5 n-l log (1 /T i ) .  
&A, 

An interesting question is: under what conditions exactly is 
this bound tight? 

To answer this question, we pause for a moment from our 
original problem and consider the problem of universal coding 
for a class with a countable number of sources defined by 
arbitrary PMF's on X" ,  denoted Q(.li), i = 1 , 2 , .  . ' ,  M,. In 
the next lemma, we provide bounds on the redundancy of the 
mixture 

w.r.t. every Q(.li). Let g: X" 4 {1,2,. .., Adn} denote an 
arbitrary estimator of the index i of Q(.li), and let Q(e l i )  = 
Q{z:g(z) # i l i }  denote the error probability given i .  Simi- 
larly, let Q(cli) = 1 - Q(e l i ) ,  and 

i 

for the given prior T .  Then, we have the following result: 
- Lemma I: For every estimator g and every 1 5 i 5 Mn 

+ Q(eli) log Q(el4.  (28) 

The proof appears in Appendix I. 
The lemma tells us that if there exists a consistent estimator 

g, i.e., Q(e l i )  for every i ,  and so Q(e) ,  tend to zero as n --+ CO, 

then the rightmost side tends to log (l/ri) and hence so does 
nD(Q(.li)llQ,). In other words, for a discrete set of sources 
{Q(.l i)} that are distinguishable upon observing z by some 
decision rule g, the redundancy of the mixture QT w.r.t. Q(.li) 
behaves like n-l log (1/~i) for large n. 

The relevance of this lemma to our problem becomes 
apparent by letting Q(zli) = and then Q(e1i) is 
interpreted as the average error probability given A, w.r.t. wi. 
Specifically, for a given 0 E A,, let us denote 

Corollary 1: For every estimator g and every 1 5 i 5 Mn 

+ P(eJi) logF(eJi) .  (34) 

The corollary tells us that if there exists an index estimator 
g that is consistent for "most" 0 E A,, i = 1 , 2 ,  . . . , M,, in the 
sense that for every t > 0, w,{0: P(el0)  2 E }  4 0 as TZ -' CO, 

then the lower bound will be essentially log ( l /rz) .  
A common example is where A, is the class of all unifilar 

finite-state sources with i states. A unifilar finite-state source 
is characterized by 

n 

where 0 = { ~ ( z l s ) } ,  s =   SI,...,^,) is a state sequence 
whose elements are taking values in { 1, . . . , i } ,  and st ,  t = 
2 , 3 , .  .. , is given by a deterministic function of xt-1 and 
s ~ - ~ ,  while the initial state s1 is assumed fixed. In this 
example, there is a consistent estimator 1241 for i provided 
that Mn is fixed or grows sufficiently slowly with n. (See 
also Hannan and Quinn [14], Kieffer 1151, and Rudich 1211 
for earlier related work on model order selection.) It should 
be pointed out that in [24] it has not been established explicitly 
that P(e) + 0 for the model estimator proposed therein. 
Nevertheless, this can be easily deduced from the following 
consideration: For every E > 0, the set (0 E A,: P(el0) 2 e} 
has a vanishingly small probability w.r.t. w, as n -+ m, 
provided that w, does not put too much mass near the 
boundaries between A, and Ai-1. 

Let us denote the lower bound of Corollary 1 by [log (l/n,) 
- ~ " ( i ) ] ,  i.e., 

- 

- P(eli) logP(e1i) (35) 

keeping in mind that if the classes {A,} are distinguishable 
in the sense that such an estimator g exists, then ~ , ( i )  -+ 0 
for every fixed i .  There are two immediate conclusions from 
Corollary 1. First, it implies that 

n sup rn(0) 2 log ( I / T ~ )  - e,(i) 
BEA, 

and since we have already seen that 

n sup 5 log (1/7ri) 
B € h ,  

We also note that this substitution gives we conclude that 

wi (dg)rn ( d )  = o(Q(. l i )  I IQn) (33) n sup rn(0) M log ( l / X i ) .  
B E &  

and so it immediately leads to the following corollary to 
Lemma 1. 

Second, since the supremum is upper-bounded by log (1/n,), 
while the expectation is lower-bounded by log ( l / r z )  - tn(i), 
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then obviously, “most” points in A, must have nr,(0) 
log (l/n,). More precisely, for A > 0 let 

Then, we have 

(37) 

which implies that 

By combining Theorem 3, where A, = X/n (X>O),  and 
(38), both with w, = tu: for all i, we obtain a lower bound 
on the redundancy of an arbitrary UD encoder with length 
function L. Specifically 

2X 
n R,(L, 0) 2 R,(LJ: 10) + .,(e) - - 

The first inequality, which is a restatement of Theorem 3, 
applies to “most” sources w.r.t. w: of “most” classes w.r.t. 
7 r .  The second inequality, which follows from Theorem 1, 
and the third inequality, which we have now established, both 
hold for “most” 0 E A, w.r.t. tu:. 

Thus we have just proved the following Theorem, which 
provides a lower bound for hierarchical universal coding, for 
the case of distinguishable classes of sources. 

Theorem 4: Let g be an estimator of the index of the class 
such that 

~ * ( e l i )  = S,. w:(do)P(ele) + o 

as n -j CO uniformly for all 1 5 z 5 M,. Let L be the length 
function of an arbitrary UD encoder that does not depend 
on 0 or i ,  and let X > O  and A > O  be arbitrary constants. 
Then, for every i ,  except for a subset of { 1,2,  . . , M,} whose 
total weight w.r.t. 7r is less than 2-’, every class A, has the 
following property: 

for every 0 E A; except for points in a subset B; c A; such 
that 

where ~ : ( i )  is defined as in (35), with average error probabil- 
ities being defined w.r.t. {wr}. 

Again, as mentioned after Theorem 1, it should be kept in 
mind that if necessary, each w: can be essentially replaced by 

a prior that is bounded away from zero, and at the same time, 
nearly achieves Cn(A,) (see also [16]). 

The second term of the lower bound might not be mean- 
ingful if log (l/n,) is of the same order of magnitude as 
A + 3X, which in turn should be reasonably large so as to 
keep the mass of B, small. However, if we fix X and A so 
that w:(B,) would be fairly small, say 0.01, and if M, is 
very large ( M ,  may tend to infinity), then for most classes 
(in the uniform counting sense), n, must be very small, and 
so log (1/n2) would be large compared to A + 3X. Thus the 
assertion of the theorem is meaningful if 7r is chosen such that 
for “most” values of i w.r.t. 7r, log (1/7rz) is large. This can 
happen only if 7r has a large entropy, i.e., it is close to the 
uniform distribution in some sense. Of course, if 7r is exactly 
uniform then log (1/7r7) = logM,, for all i. This interpretation 
of Theorem 4, however, should be taken carefully, because if 
i is allowed to grow with n, and hence 7r, decays with n, then 
t;(z) is small only if 

P*(.) = 7r,B*(elz) 
2 

is small compared to 7r; (see Corollary 1). In other words, 
Theorem 4 is meaningful only for i that is sufficiently small 
compared to n. This is guaranteed for all i when M, grows 
sufficiently slowly. 

Roughly speaking, the theorem tells us that if the classes 
{A,} are distinguishable in the sense that there exists a 
good estimator g, then the minimum achievable redundancy 
is approximately 

Cn(Ri) + -log 1 1  -. 
n n; 

Note that if, in addition, { ~ i }  is a monotonically nonincreasing 
sequence, then 7r; 5 l / i ,  and so log ( l /nz)  is further lower- 
bounded by logi. This is still nearly achievable by assigning 
the universal prior on the integers or 7ri cx l/i1+6 where 6 > 0 
if M, = CO. This means that 

log i 
Cn(Ai) + - n (43) 

is the minimum attainable redundancy w.r.t. any monotone 
weighting of the indices { i } .  

The minimum redundancy (42) is attained by a two-stage 
mixture where w, = w:. The choice of n, in this case, can 
be either based on the guidelines provided in the previous 
section or on the following consideration: We would like 
the extra redundancy term log ( l / 7r2 )  to be a small fraction 
of the first redundancy term Cn(Az) that we must incur 
anyhow. Specifically, if possible, we would like to choose 
n-’ log (l/nz) M EC,(A,), which leads to 

2-€ncn (A,) 
n, = (44) 

where K,(t) is a normalizing factor. This means that the rich 
and complex classes are assigned a smaller prior probability. 
The redundancy would then be ( 1 + E )  C, (A, ) + n- l log K,  ( E ) ,  

Kn (€1 
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where now the second term does not depend on i. For example, 
if Ai is the class of ith-order Markov sources, then 

Cn(Ri) z 0.5Ai(A - 1) logn/n 

(see, e.g., [lo], [20]), and so 

As for the normalization factor 
03 

i=O 

i=l 

and therefore the term n-l log K,  ( e )  has a negative contribu- 
tion. Note that if M, < ca and e is chosen very small (so that 
the coefficient in front of Cn(A,) would be close to unity), 
then 7r is close to uniform. This agrees with the conclusion 
of our earlier discussion that 7r should be uniform or nearly 
uniform. 

We have mentioned before the hierarchy of classes of 
unifilar finite-state sources as an example where the classes 
are distinguishable. In the next section, we examine another 
example-FS AVS's-where the natural hierarchical partition 
does not yield distinguishable classes, yet the universal coding 
redundancy can be characterized quite explicitly. 

VI. ARBITRARILY VARYING SOURCES 
An FS AVS is a nonstationary memoryless source charac- 

terized by the PMF 

then led to treat separately each type class of state sequences 
with the same empirical distribution, in other words, to use 
the hierarchical approach. 

We, therefore, pause to provide a few definitions associated 
with type classes. For a given state sequence s E S", the 
empirical PMF is the vector ws = {ws(s), s E S} where 
ws(s) = ns(s) /n ,  n s ( s )  being the number of occurrences 
of the state s E S in the sequence s. The set of all empir- 
ical PMF's of sequences s in S", i.e., rational PMF's with 
denominator n, will be denoted by P,. The type class T, of a 
state sequence s is the set of all state sequences s' E S" such 
that wsr = wg. We shall also denote the type classes of state 
sequences by {T,) where the index z is w.r.t. some arbitrary 
but fixed ordering in P,. 

We will now consider A = S" as the union of all type 
classes A; = T,, z = 1 , 2 ,  . . . , M, = [?,I. Note that since the 
empirical PMF of s can be estimated with precision no better 
than 0(1/fi), it is clear that in this case, the assumption 
on a good estimator of the exact class A, = T, is not met. 
Therefore, we are led to use one of the guidelines described 
in Section IV regarding the choice of the priors. (We will 
elaborate on this point at the end of this section.) 

Let us focus on the two-stage mixture code L,, where 
w, = w: attains the capacity within each type class. Following 
[12, Theorem 4.5.21, it is readily seen that the intra-class 
capacity Cn(T;) is attained by a uniform distribution on T,, 
i.e., 

(48) w;(s) = U;(.) = ITil' s E T; * { elsewhere. 

It is shown in Appendix I1 that if T, corresponds to an 
empirical PMF on S that tends to a fixed PMF w = {w(s), s E 
S ) ,  then Cn(Ti) tends to 

where z = (xl,... ,xn) is again the source sequence to 
be encoded, and s = ( S I , .  . . , s,) is an unknown arbitrary 
sequence of states corresponding to x, where each s; takes 
on values in a finite set S.  We shall assume, for the sake of 
simplicity, that the parameters of the AVS { ~ ( Z I S ) ) , E X , ~ E S  
are known, and then only universality w.r.t. the unknown state 
sequence will be studied. This is clearly a special case of our 
problem with 0 = s and A = S". 

Obviously, since C, for all n is given by the capacity C of 
the memoryless channel p ( z I s ) ,  it does not vanish with n and 
so, universal coding in the sense of approaching the entropy, 
is not feasible for this large class of sources. Yet, universal 
coding in the sense of attaining the lower bound remains 
a desirable goal. The capacity-achieving prior on S" is the 
i.i.d. measure w* that achieves the capacity of the memoryless 
channel (47). Therefore, most of the mass is assigned by w* to 
state sequences whose empirical distributions are close to w*. 
Consequently, if A = S" is treated as one big class of sources, 
[ 16, Theorem I ]  and Theorem 2 herein tell us very little about 
the redundancy incurred at all other state sequences. We are 

(49) 

The second redundancy term T,(s)  = ?-,(e) associated with 
L, is given by 

where 

Observe that Pu,(z), and hence also PT(x) (which is a 
mixture of {Pu*(z)}), are invariant to permutations of z. 
Consequently, the expectation on the right-hand side of (50) is 
the same for all s E Ti, and so, the second-order redundancy 
term T,(s) is exactly the normalized divergence between Put 
and P,. If, in addition, T = T * ,  the capacity-achieving prior 
of the channel from i to z defined by {Pu,(z)), then this 
divergence coincides with the capacity c, of this channel for 
every i with T; > 0. Clearly 

c, 5 n-l log lP,J = O(logn/n). 
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In summary, for AVS’s it is natural to apply Theorem 3 
with uniform weighting within each type. The best attainable 
compression ratio (in the sense of Theorem 3) is given by 
H ( X l s ) / n  + C,(Ts) + e,, where 

While the third term c, decays at the rate of lognln,  the first 
two terms tend to constants if ws tends to a fixed w. The sum 
of these constants is H,(X),  the entropy of a memoryless 
source with letter probabilities given by 

Pw(.) = 4 S M . b ) .  (53) 
s E S  

This is different from earlier results on source coding for 
the AVS due to Berger [4] and Csiszk and Korner [SI, 
who considered fixed-length rate-distortion codes that satisfy 
an average distortion constraint for every state sequence. In 
their setting, for the distortionless case, the best achievable 
rate is maxw H,(X).  Thus our results coincide with the 
earlier result only if the underlying state sequence happens 
to belong to the type that corresponds to the worst empirical 
PMF that maximizes Hw(X). In other words, by using the 
hierarchical approach and allowing variable-length codes, we 
enable “adaptation” to the unknown underlying state sequence 
rather than using the worst case strategy. 

We have then, both improved the main redundancy term and 
characterized the best attainable second-order performance in 
the sense of Theorem 3. 

An interesting special case is where S = X and ~ ( ~ 1 s )  = 1 

with precision O( l / f i ) .  This can be done by solving the 
linear equations 

ws(s)dals) = 4z(a), a E x 
s E S  

where 4% ( U) is the relative frequency of a in x. This means that 
if we define A, as unions of all neighboring type classes whose 
corresponding empirical PMF’ s differ by 0 ( 1 / fi) , then the 
assumption about the existence of a good estimator becomes 
valid. In this case, it is difficult, however, to determine w: and 
to assess the redundancy term Cn(Az). 

APPENDIX I 
PROOF OF LEMMA 1 

The first inequality is obvious since QT(z) 2 ni&(zli) for 
every x and every i. As for the second inequality, let us denote 
by Rj the set of all x E X” for which g(z) = j ,  and let R; 
denote the complementary set. Since data processing cannot 
increase the relative entropy, D(Q(.li) I I Q T )  is lower-bounded 
by 

The proof is now completed by observing that 

Q(cl i)  = Q(aili),Q(+) = Q(fiPIi),QT(RZ) I 1 

and 

if x = s and zero otherwise, in other words, x is always 
identical to s. In this case, H(Xls )  = 0. If, in addition, x 
is such that the relative frequencies of all letters are bounded 

J 

5~~ + ~ ~ , Q ( Q , I j )  
j#i 

away from zero, then 
i j # i  

= ni + &(e) .  

where H z ( X )  is the entropy associated with the empirical APPENDIX I1 
PMF of x and ASYMPTOTIC BEHAVIOR OF C, (Ts) 

log n 
n 

In this Appendix, we prove that if w, tends to a fixed PMF 
w on S, then C,(T,) of the corresponding type T, = T, tends n (55) 

Therefore, we conclude that the total minimum description 
length (MDL) is approximately 

in the deterministic sense. This coincides with a special 
case of one of the main results in [25], where optimum 
length functions assigned by sequential finite state machines 
for individual sequences were investigated, and the above 
minimum length corresponds to a single-state machine. 

Finally, the following comment is in order. We mentioned 
earlier that the exact index i of T, cannot be estimated by 
observing x and hence Theorem 4 is inapplicable. Neverthe- 
less, if IS1 5 1x1 and the rank of transition probability matrix 
{ p ( z l s ) }  is ISI, then the empirical PMF of s can be estimated 

to Iw(X; S ) .  The quantity (?,(Ti) is given by 

where H i ( X )  is the entropy associated with n-vectors gov- 
erned by 

and 
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Since H ( X l s ) / n  is the same for all s E Ti, and since it tends 
to 

H,(XIS) = - W ( S )  P ( ~ l s ) l o g P ( ~ l s )  (A61 
S E S  X € X  

so does the average of H(z1s) over s E Ti. Therefore, it will 
be sufficient to show that H ; ( X ) / n  tends to the entropy of a 
memoryless source with letter probabilities given by 

s t S  

To this end, we shall introduce the following notation. 
Similarly as in the definition of type classes of state sequences, 
the empirical PMF of the sequence IG will be denoted by 
{q,(z),z E X}, where qx(z) is the relative frequency of 
x in x. The respective type will be denoted by T,, and 
the associated empirical entropy will be denoted by H z ( X ) .  
For a sequence pair (5,s) E X” x S” the joint empirical 
PMF is defined by the joint empirical PMF of x and s, and 
the joint type T,, of (2,s) is the set of all pair sequences 
(x’,~’) E X” x S” with the same empirical joint PMF as 
(2, s). The empirical joint entropy is denoted by H,,(X, S). 

A conditional type T,l, for a given z is the set of all 
sequences s’ in S” for which (2, s’) E Tzs. The corresponding 
empirical conditional entropy is given by 

(A71 

Similar definitions and notations apply when the roles of 
{z, X ,  x, X} and {s, S, s, S }  are interchanged. 

For two sequences {a,} and {b,}, the notation a,  = b, 
means that 

HSlZ(SIX) = Hx,(X,  S) - Hx(X). 

It is well known [SI that lT,l = 2nHe(S) and IT,lzl = 
2nH+(SIX). Using these facts together with the fact that 
P(x1s) 5 2-nH+(xls) we have 

- - 2--nHe(S) 

- - 2-”Hz(X) 

2”Hdlz(slx) . 2-nHzl,(xls) 

TslsCTa 

(A@ 

where in the last step we have used the fact that the number 
of conditional types classes is polynomial in n. Therefore 

(A91 -log Put (5) p nH,(X) + o(n). 

If the empirical PMF of s tends to w, then by the strong law 
of large numbers, for every s’ E T,, qz(z) + p w ( x )  with 
probability one, and so the expected value of H = ( X )  given 
every s’ E Ts tends to the entropy of {p,(z) ,x E X } .  A 
fortiori, the overall expectation after averaging over T, tends 
to the same entropy. Thus 

lirnirif H , ( X ) / n  2 H w ( X ) .  
n 

For the converse inequality, note that the entropy H,  (X) / n  
of a vector X = ( X I ,  . . . , X,) governed by PU, is never larger 
than the average of the marginal entropies 

n 

n-l H ( X t ) .  
t=l 

Since X, is governed by p( . ls t ) ,  then by the concavity of 
the entropy function, the latter expression in turn, is upper- 
bounded by the entropy of the i.i.d. measure 

which again tends to p,(x). Thus 

limsup H ; ( X ) / n  5 H,(X) 
n 

completing the proof of the claim. 
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